Limit this search to....

A Practical Introduction to the Simulation of Molecular Systems
Contributor(s): Field, Martin J. (Author)
ISBN: 0521852528     ISBN-13: 9780521852524
Publisher: Cambridge University Press
OUR PRICE:   $158.65  
Product Type: Hardcover - Other Formats
Published: August 2007
Qty:
Temporarily out of stock - Will ship within 2 to 5 weeks
Annotation: In this vital resource, Martin Field provides a practical introduction to the range of different techniques available for the simulation of molecular systems. The text includes a library of program modules written in Fortran 90 with which the simulations discussed were performed. Each chapter describes a general class of methods or algorithms, and then illustrates their use with example programs, written using the module library. Topics covered include energy functions, geometry optimization and reaction path location techniques, normal mode analysis, molecular dynamics and Monte Carlo simulations and free energy calculations. This book will be of interest to advanced undergraduates, graduate students and researchers who use molecular simulation techniques, particularly in theoretical and computational chemistry, biophysics, and computational molecular physics.
Additional Information
BISAC Categories:
- Science | Chemistry - Physical & Theoretical
- Science | Physics - Atomic & Molecular
- Technology & Engineering | Materials Science - General
Dewey: 541.220
Physical Information: 0.84" H x 7.05" W x 9.8" (1.84 lbs) 344 pages
 
Descriptions, Reviews, Etc.
Publisher Description:
Molecular simulation is a powerful tool in materials science, physics, chemistry and biomolecular fields. This updated edition provides a pragmatic introduction to a wide range of techniques for the simulation of molecular systems at the atomic level. The first part concentrates on methods for calculating the potential energy of a molecular system, with new chapters on quantum chemical, molecular mechanical and hybrid potential techniques. The second part describes methods examining conformational, dynamical and thermodynamical properties of systems, covering techniques including geometry-optimization, normal-mode analysis, molecular dynamics, and Monte Carlo simulation. Using Python, the second edition includes numerous examples and program modules for each simulation technique, allowing the reader to perform the calculations and appreciate the inherent difficulties involved in each. This is a valuable resource for researchers and graduate students wanting to know how to use atomic-scale molecular simulations. Supplementary material, including the program library and technical information, available through www.cambridge.org/9780521852524.

Contributor Bio(s): Field, Martin J.: - "Martin J. Field is Group Leader of the Laboratoire de Dynamique Moléculaire at the Institut de Biologie Structurale - Jean-Pierre Ebel, Grenoble. He was awarded his PhD in quantum chemistry from the University of Manchester, UK, in 1985. His areas of research include using molecular modeling and simulation techniques to study biological problems more specifically, his current interests are in the development and application of hybrid potential techniques to study enzymatic reaction mechanisms and other condensed phase processes."