Limit this search to....

Advances in Conservation Laws and Energy Release Rates: Theoretical Treatments and Applications 2002 Edition
Contributor(s): Yi-Heng Chen (Author)
ISBN: 1402005008     ISBN-13: 9781402005008
Publisher: Springer
OUR PRICE:   $161.49  
Product Type: Hardcover - Other Formats
Published: March 2002
Qty:
Annotation: This book summarizes two significant tendencies for application of conservation laws and energy release rates. The first is to establish a bridge between some famous invariant integrals and microcrack damage descriptions. The second is the direct extension from the understandings established in Fracture Mechanics for conventional materials to those for functional materials. In the first point it discusses the vanishing nature for both components of the Jk-integral vector when the closed contour encloses all discontinuities completely. Both mathematical manipulations and numerical examinations are given. Thus the M-integral and the L-integral are independent of coordinate shifts and, more significantly, the M-integral presents a new description for the damage level of a microcracking brittle solid. In the second point it discusses the direct extension from the basic understandings established in Linear Elastic Fracture Mechanics to those for functional materials, e.g., piezoelectric ceramics. Owing to the mechanical and electric coupling, some new insights of energy release rates are discussed in detail.
Additional Information
BISAC Categories:
- Science | Mechanics - General
- Mathematics | Applied
- Technology & Engineering | Materials Science - Ceramics
Dewey: 519
LCCN: 2002024312
Physical Information: 0.75" H x 6.14" W x 9.21" (1.39 lbs) 298 pages
 
Descriptions, Reviews, Etc.
Publisher Description:
This book deals with some recent advances in conservation laws and energy release rates. Unlike their conventional applications in Fracture Mechanics for single crack problems, the contents of this book are mainly concemed with the conservation lawsand energy release rates insomerelatively complex problems, i. e., strongly interacting cracks, microcrack damage, and microcrack shielding problems in f ive kinds of materiaIs, respectively. The five kinds of materials involve four traditional structural materiaIs: brittIe solids, metallceramic bi- materiaIs, anisotropic elastic solids, and dissimilar anisotropic solids; and one functional material: piezoelectric ceramics. Although this book starts from the original concepts of the Jk vector, the Mintegral, and the L integral in sin- gle crack problems proposed by Eshelby (1956, 1970, 1975), Rice (1968a, b), Knowies and Stemberg (1972), Budiansky and Rice (1973), Berges (1974), Freund (1978), Cherepanov (1974, 1979), and Herrman and Herrman (1981), etc., the extension from investigations of single crack problems to those of multiple crack interacting problems or microcrack damage problems is based on the author's (andlor co-workers) works published in recent years. From detailed manipulations and numerical examinations the author would like to show readers some new insights of the conservation laws and energy release rates. Readers will see that although these 'old' concepts were established more than 30 or 40 years ago, they play a quite important role in multiple crack interacting problems or microcrack damage problems of both structural and functional materials.