Limit this search to....

Handbook of Anatomical Models for Radiation Dosimetry
Contributor(s): Xu, Xie George (Editor), Eckerman, Keith F. (Editor)
ISBN: 1420059793     ISBN-13: 9781420059793
Publisher: CRC Press
OUR PRICE:   $266.00  
Product Type: Hardcover - Other Formats
Published: September 2009
Qty:
Temporarily out of stock - Will ship within 2 to 5 weeks
Annotation:

Covering the 40-year history of human model development, the Handbook of Anatomical Models for Radiation Dosimetry presents all of the major anatomical and physical models that have been developed for human body radiation protection, diagnostic imaging, and nuclear medicine therapy. This comprehensive reference explores how these models have evolved over time and the role that modern technologies has played in this development. In addition, it evaluates the specific strengths of each model, discusses the wide range of applications available for these models, and addresses technical aspects of human modeling and computer simulations. The book also covers external radiation treatment.

Additional Information
BISAC Categories:
- Science | Radiation
- Science | Physics - General
Dewey: 612.014
LCCN: 2009012396
Series: Series in Medical Physics and Biomedical Engineering
Physical Information: 1.6" H x 7.1" W x 10" (3.30 lbs) 757 pages
 
Descriptions, Reviews, Etc.
Publisher Description:

Over the past few decades, the radiological science community has developed and applied numerous models of the human body for radiation protection, diagnostic imaging, and nuclear medicine therapy. The Handbook of Anatomical Models for Radiation Dosimetry provides a comprehensive review of the development and application of these computational models, known as phantoms.

An ambitious and unparalleled project, this pioneering work is the result of several years of planning and preparation involving 64 authors from across the world. It brings together recommendations and information sanctioned by the International Commission on Radiological Protection (ICRP) and documents 40 years of history and the progress of those involved with cutting-edge work with Monte Carlo Codes and radiation protection dosimetry. This volume was in part spurred on by the ICRP's key decision to adopt voxelized computational phantoms as standards for radiation protection purposes. It is an invaluable reference for those working in that area as well as those employing or developing anatomical models for a a number of clinical applications.

Assembling the work of nearly all major phantom developers around the world, this volume examines:

  • The history of the research and development in computational phantoms
  • Detailed accounts for each of the well-known phantoms, including the MIRD-5, GSF Voxel Family Phantoms, NCAT, UF Hybrid Pediatric Phantoms, VIP-Man, and the latest ICRP Reference Phantoms
  • Physical phantoms for experimental radiation dosimetry
  • The smallest voxel size (0.2 mm), phantoms developed from the Chinese Visible Human Project

  • Applications for radiation protection dosimetry involving environmental, nuclear power plant, and internal contamination exposures

  • Medical applications, including nuclear medicine therapy, CT examinations, x-ray radiological image optimization, nuclear medicine imaging, external photon and proton treatments, and management of respiration in modern image-guided radiation treatment
  • Patient-specific phantoms used for radiation treatment planning involving two Monte Carlo code systems: GEANT4 and EGS
  • Future needs for research and development

Related data sets are available for download on the authors' website. The breadth and depth of this work enables readers to obtain a unique sense of the complete scientific process in computational phantom development, from the conception of an idea, to the identification of original anatomical data, to solutions of various computing problems, and finally, to the ownership and sharing of results in this groundbreaking field that holds so much promise.