Limit this search to....

Adaptive Finite Element Solution Algorithm for the Euler Equations Softcover Repri Edition
Contributor(s): Shapiro, Richard A. (Author)
ISBN: 3528076321     ISBN-13: 9783528076320
Publisher: Vieweg+teubner Verlag
OUR PRICE:   $52.24  
Product Type: Paperback
Published: January 1991
Qty:
Additional Information
BISAC Categories:
- Science | Physics - General
- Technology & Engineering | Mechanical
- Science | Mechanics - Fluids
Dewey: 530
LCCN: 92201361
Series: Notes on Numerical Fluid Mechanics and Multidisciplinary Des
Physical Information: 0.39" H x 6.14" W x 9.21" (0.59 lbs) 166 pages
 
Descriptions, Reviews, Etc.
Publisher Description:
This monograph is the result of my PhD thesis work in Computational Fluid Dynamics at the Massachusettes Institute of Technology under the supervision of Professor Earll Murman. A new finite element al- gorithm is presented for solving the steady Euler equations describing the flow of an inviscid, compressible, ideal gas. This algorithm uses a finite element spatial discretization coupled with a Runge-Kutta time integration to relax to steady state. It is shown that other algorithms, such as finite difference and finite volume methods, can be derived using finite element principles. A higher-order biquadratic approximation is introduced. Several test problems are computed to verify the algorithms. Adaptive gridding in two and three dimensions using quadrilateral and hexahedral elements is developed and verified. Adaptation is shown to provide CPU savings of a factor of 2 to 16, and biquadratic elements are shown to provide potential savings of a factor of 2 to 6. An analysis of the dispersive properties of several discretization methods for the Euler equations is presented, and results allowing the prediction of dispersive errors are obtained. The adaptive algorithm is applied to the solution of several flows in scramjet inlets in two and three dimensions, demonstrat- ing some of the varied physics associated with these flows. Some issues in the design and implementation of adaptive finite element algorithms on vector and parallel computers are discussed.