Limit this search to....

Ocean Optics
Contributor(s): Spinrad, Rochard W. (Author), Carder, Kendall L. (Author), Perry, Mary Jane (Author)
ISBN: 0195068432     ISBN-13: 9780195068436
Publisher: Oxford University Press, USA
OUR PRICE:   $435.60  
Product Type: Hardcover
Published: January 1994
Qty:
Annotation: Since the publication of Jerlov's classic volume on optical oceanography in 1968, the ability to predict or model the submarine light field, given measurements of the inherent optical properties of the ocean, has improved to the point that model fields are very close to measured fields. In
the last three decades, remote sensing capabilities have fostered powerful models that can be inverted to estimate the inherent optical properties closely related to substances important for understanding global biological productivity, environmental quality, and most nearshore geophysical
processes. This volume presents an eclectic blend of information on the theories, experiments, and instrumentation that now characterize the ways in which optical oceanography is studied. Through the course of this interdisciplinary work, the reader is led from the physical concepts of radiative
transfer to the experimental techniques used in the lab and at sea, to process-oriented discussions of the biochemical mechanisms responsible for oceanic optical variability. The text will be of interest to researchers and students in physical and biological oceanography, biology, geophysics,
limnology, atmospheric optics, and remote sensing of ocean and global climate change.
Additional Information
BISAC Categories:
- Science | Earth Sciences - Oceanography
- Science | Physics - Optics & Light
- Science | Life Sciences - Ecology
Dewey: 551.460
LCCN: 93007840
Series: Oxford Monographs on Geology and Geophysics
Physical Information: 1.05" H x 6.32" W x 9.2" (1.35 lbs) 304 pages
Themes:
- Topical - Ecology
 
Descriptions, Reviews, Etc.
Publisher Description:
Since the publication of Jerlov's classic volume on optical oceanography in 1968, the ability to predict or model the submarine light field, given measurements of the inherent optical properties of the ocean, has improved to the point that model fields are very close to measured fields. In
the last three decades, remote sensing capabilities have fostered powerful models that can be inverted to estimate the inherent optical properties closely related to substances important for understanding global biological productivity, environmental quality, and most nearshore geophysical
processes. This volume presents an eclectic blend of information on the theories, experiments, and instrumentation that now characterize the ways in which optical oceanography is studied. Through the course of this interdisciplinary work, the reader is led from the physical concepts of radiative
transfer to the experimental techniques used in the lab and at sea, to process-oriented discussions of the biochemical mechanisms responsible for oceanic optical variability. The text will be of interest to researchers and students in physical and biological oceanography, biology, geophysics,
limnology, atmospheric optics, and remote sensing of ocean and global climate change.