Limit this search to....

Scanning Electron Microscopy and X-Ray Microanalysis: Third Edition Corrected 2003. Edition
Contributor(s): Goldstein, Joseph (Author), Newbury, Dale E. (Author), Joy, David C. (Author)
ISBN: 0306472929     ISBN-13: 9780306472923
Publisher: Springer
OUR PRICE:   $113.99  
Product Type: Hardcover
Published: January 2003
Qty:
Temporarily out of stock - Will ship within 2 to 5 weeks
Annotation: This text provides students as well as practitioners (engineers, technicians, physical and biological scientists, clinicians, and technical managers) with a comprehensive introduction to the field of scanning electron microscopy (SEM) and X-ray microanalysis.
Additional Information
BISAC Categories:
- Science | Electron Microscopes & Microscopy
- Science | Research & Methodology
- Technology & Engineering | Electrical
Dewey: 502.825
LCCN: 2002028276
Physical Information: 1.4" H x 7.3" W x 9.9" (3.65 lbs) 689 pages
 
Descriptions, Reviews, Etc.
Publisher Description:
In the decade since the publication of the second edition of Scanning Electron Microscopy and X-Ray Microanalysis, there has been a great expansion in the capabilities of the basic scanning electron microscope (SEM) and the x-ray spectrometers. The emergence of the variab- pressure/environmental SEM has enabled the observation of samples c- taining water or other liquids or vapor and has allowed for an entirely new class of dynamic experiments, that of direct observation of che- cal reactions in situ. Critical advances in electron detector technology and computer-aided analysis have enabled structural (crystallographic) analysis of specimens at the micrometer scale through electron backscatter diffr- tion (EBSD). Low-voltage operation below 5 kV has improved x-ray spatial resolution by more than an order of magnitude and provided an effective route to minimizing sample charging. High-resolution imaging has cont- ued to develop with a more thorough understanding of how secondary el- trons are generated. The ?eld emission gun SEM, with its high brightness, advanced electron optics, which minimizes lens aberrations to yield an - fective nanometer-scale beam, and "through-the-lens" detector to enhance the measurement of primary-beam-excited secondary electrons, has made high-resolution imaging the rule rather than the exception. Methods of x-ray analysis have evolved allowing for better measurement of specimens with complex morphology: multiple thin layers of different compositions, and rough specimens and particles. Digital mapping has transformed classic x-ray area scanning, a purely qualitative technique, into fully quantitative compositional mapping.