Limit this search to....

Fluoride Removal from Groundwater by Adsorption Technology
Contributor(s): Salifu, Abdulai (Author)
ISBN: 0815392079     ISBN-13: 9780815392071
Publisher: CRC Press
OUR PRICE:   $109.25  
Product Type: Paperback - Other Formats
Published: November 2017
Qty:
Temporarily out of stock - Will ship within 2 to 5 weeks
Additional Information
BISAC Categories:
- Science | Environmental Science (see Also Chemistry - Environmental)
- Technology & Engineering | Environmental - Water Supply
- Technology & Engineering | Civil - General
Series: Ihe Delft PhD Thesis
Physical Information: 0.7" H x 6.7" W x 9.4" (1.65 lbs) 276 pages
 
Descriptions, Reviews, Etc.
Publisher Description:

In the Eastern corridor of Northern region of Ghana, presence of high fluoride concentration in the groundwater has made many drilled boreholes unusable for drinking. Little is, however, known about the factors contributing to the occurrence of high fluoride in this part of Ghana and it's spatial distribution. Treatment of the fluoride-contaminated groundwater by adsorption is also hampered by the lack of suitable adsorbents that are locally available.

Based on principal component analysis, and saturation indices calculations, this thesis highlights that, the predominant mechanisms controlling the fluoride enrichment probably include calcite precipitation and Na/Ca exchange processes, both of which deplete Ca from the groundwater, and promote the dissolution of fluorite. The mechanisms also include F-/OH- anion exchange processes, as well as evapotranspiration processes which concentrate the fluoride ions, hence increasing its concentration in the groundwater. Spatial mapping showed that the high fluoride groundwaters occur predominantly in the Saboba, Cheriponi and Yendi districts.

The thesis further highlights that, modifying the surface of indigenous materials by an aluminium coating process, is a very promising approach to develop a suitable fluoride adsorbent. Aluminum oxide coated media reduced fluoride in water from 5. 0 0.2 mg/L to

Field testing in a fluoritic community in Northern Ghana showed that the adsorbent is also capable of treating fluoride-contaminated groundwater in field conditions, suggesting it is a promising defluoridation adsorbent. The adsorbent also showed good regenerability potential that would allow re-use, which could make it practically and economically viable. Additional research is, however, required to further increase the fluoride adsorption capacity of developed adsorbent.