Limit this search to....

An Integrated Introduction to Computer Graphics and Geometric Modeling
Contributor(s): Goldman, Ronald (Author)
ISBN: 143980334X     ISBN-13: 9781439803349
Publisher: CRC Press
OUR PRICE:   $133.00  
Product Type: Hardcover - Other Formats
Published: July 2009
Qty:
Annotation:

Taking a novel, more appealing approach than current texts, this book presents an easy-to-read introduction to computer graphics and geometric modeling. Emphasizing high-level algorithms, it focuses on standard graphics, modeling, and mathematical methods, including ray tracing, polygon shading, radiosity, fractals, freeform curves and surfaces, vector methods, and transformation techniques. The author begins with fractals first rather than typical line drawing algorithms and also brings back the turtle from obscurity to introduce several major concepts in computer graphics. The text includes many exercises and programming projects and offers a website with PowerPoint slides.

Additional Information
BISAC Categories:
- Computers | Computer Graphics
- Computers | Programming - Games
- Mathematics | Arithmetic
Dewey: 006.6
LCCN: 2008054783
Series: Chapman & Hall/CRC Computer Graphics, Geometric Modeling, an
Physical Information: 1.3" H x 7" W x 10" (2.70 lbs) 590 pages
 
Descriptions, Reviews, Etc.
Publisher Description:

Taking a novel, more appealing approach than current texts, An Integrated Introduction to Computer Graphics and Geometric Modeling focuses on graphics, modeling, and mathematical methods, including ray tracing, polygon shading, radiosity, fractals, freeform curves and surfaces, vector methods, and transformation techniques. The author begins with fractals, rather than the typical line-drawing algorithms found in many standard texts. He also brings the turtle back from obscurity to introduce several major concepts in computer graphics.

Supplying the mathematical foundations, the book covers linear algebra topics, such as vector geometry and algebra, affine and projective spaces, affine maps, projective transformations, matrices, and quaternions. The main graphics areas explored include reflection and refraction, recursive ray tracing, radiosity, illumination models, polygon shading, and hidden surface procedures. The book also discusses geometric modeling, including planes, polygons, spheres, quadrics, algebraic and parametric curves and surfaces, constructive solid geometry, boundary files, octrees, interpolation, approximation, Bezier and B-spline methods, fractal algorithms, and subdivision techniques.

Making the material accessible and relevant for years to come, the text avoids descriptions of current graphics hardware and special programming languages. Instead, it presents graphics algorithms based on well-established physical models of light and cogent mathematical methods.