Limit this search to....

Earthquakes and Multi-Hazards Around the Pacific Rim, Vol. II 2019 Edition
Contributor(s): Williams, Charles A. (Editor), Peng, Zhigang (Editor), Zhang, Yongxian (Editor)
ISBN: 3319910973     ISBN-13: 9783319910970
Publisher: Birkhauser
OUR PRICE:   $56.99  
Product Type: Paperback
Published: July 2018
Qty:
Temporarily out of stock - Will ship within 2 to 5 weeks
Additional Information
BISAC Categories:
- Science | Physics - Geophysics
- Science | Earth Sciences - Geography
Dewey: 526.1
Series: Pageoph Topical Volumes
 
Descriptions, Reviews, Etc.
Publisher Description:

This is the second of two volumes devoted to earthquakes and multi-hazards around the Pacific Rim. The circum-Pacific seismic belt is home to roughly 80% of the world's largest earthquakes, making it the ideal location for investigating earthquakes and related hazards such as tsunamis and landslides. Following the Introduction, this volume includes 14 papers covering a range of topics related to multi-hazards. The book is divided into five sections: viscoelastic deformation, earthquake source models, earthquake prediction, seismic hazard assessment, and tsunami simulation.

Viscoelastic relaxation can play an important role in subduction zone behavior, and this is explored in the first section, with specific examples including the Tohoku-oki earthquake in Eastern Japan. In addition to laboratory rock friction experiments, the second section examines earthquake source models for the 2016 MW 6.6 Aketao earthquake in Eastern Pamir and two earthquakes in Eastern Taiwan, along with strong ground motion studies of the 2008 MW 7.9 Wenchuan, China earthquake. The Load/Unload Response Ratio (LURR), Natural Time (NT), and "nowcasting" are earthquake prediction techniques that are analyzed in the third section, with nowcasting predictions performed for a number of large cities globally. Viscoelastic relaxation can play an important role in subduction zone behavior, assessment are the focus of the fourth section, with specific applications to the Himalayan-Tibetan region and the Xianshuihe Fault Zone in Southwest China. In the last section, a new approach in modeling tsunami height distributions is described.

Rapid advances are being made in our understanding of multi-hazards, as well as the range of tools used to investigate them. This volume provides a representative cross-section of how state-of-the-art knowledge and tools are currently being applied to multi-hazards around the Pacific Rim. The material here should be of interest to scientists involved in all areas of multi-hazards, particularly seismic and tsunami hazards. In addition, it offers a valuable resource for students in the geosciences, covering a broad spectrum of topics related to hazard research.