Limit this search to....

Principles of Robot Motion: Theory, Algorithms, and Implementations
Contributor(s): Choset, Howie (Author), Lynch, Kevin M. (Author), Hutchinson, Seth (Author)
ISBN: 0262033275     ISBN-13: 9780262033275
Publisher: Bradford Book
OUR PRICE:   $84.15  
Product Type: Hardcover - Other Formats
Published: March 2005
Qty:
Temporarily out of stock - Will ship within 2 to 5 weeks
Annotation: Robot motion planning has become a major focus of robotics. Research findings can be applied not only to robotics but to planning routes on circuit boards, directing digital actors in computer graphics, robot-assisted surgery and medicine, and in novel areas such as drug design and protein folding. This text reflects the great advances that have taken place in the last ten years, including sensor-based planning, probabalistic planning, localization and mapping, and motion planning for dynamic and nonholonomic systems. Its presentation makes the mathematical underpinnings of robot motion accessible to students of computer science and engineering, rleating low-level implementation details to high-level algorithmic concepts.
Additional Information
BISAC Categories:
- Technology & Engineering | Robotics
Dewey: 629.892
LCCN: 2004044906
Series: Intelligent Robotics and Autonomous Agents
Physical Information: 1.52" H x 8.1" W x 9.4" (2.90 lbs) 603 pages
 
Descriptions, Reviews, Etc.
Publisher Description:
A text that makes the mathematical underpinnings of robot motion accessible and relates low-level details of implementation to high-level algorithmic concepts.

Robot motion planning has become a major focus of robotics. Research findings can be applied not only to robotics but to planning routes on circuit boards, directing digital actors in computer graphics, robot-assisted surgery and medicine, and in novel areas such as drug design and protein folding. This text reflects the great advances that have taken place in the last ten years, including sensor-based planning, probabalistic planning, localization and mapping, and motion planning for dynamic and nonholonomic systems. Its presentation makes the mathematical underpinnings of robot motion accessible to students of computer science and engineering, rleating low-level implementation details to high-level algorithmic concepts.


Contributor Bio(s): Choset, Howie: - Howie Choset is Associate Professor in the Robotics Institute at Carnegie Mellon University.Lynch, Kevin M.: - Kevin M. Lynch is Associate Professor in the Mechanical Engineering Department, Northwestern University.Hutchinson, Seth: - Seth Hutchinson is Professor in the Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign.Kantor, George A.: - George Kantor is Project Scientist in the Center for the Foundations of Robotics, Robotics Institute, Carnegie Mellon University.Burgard, Wolfram: - Wolfram Burgard is Professor of Computer Science and Head of the research lab for Autonomous Intelligent Systems at the University of Freiburg.Kavraki, Lydia E.: - Lydia E. Kavraki is Professor of Computer Science and Bioengineering, Rice University.Thrun, Sebastian: - Sebastian Thrun is Associate Professor in the Computer Science Department at Stanford University and Director of the Stanford AI Lab.Arkin, Ronald C.: - Ronald C. Arkin is Professor and Director of the Mobile Robot Laboratory, College of Computing, Georgia Institute of Technology.